

Project 3 (P3): Traffic Control

By: Taylor D. Williams

Program Description

This project is made to be a reflection of a traffic control system. The goal of this project is to

implement this system with pthread lock(s) and semaphores. What was known about this traffic

control system is that it controls traffic at an intersection where cars can come from the North,

South, East, or West. This was implemented in the project through semaphores and pthreads

where each car, which can come from any direction, has its own thread (screenshot #1).

From any direction, the car has the ability to three different tasks, drive through the

intersection(int drive_through), which in the output is denoted as “crossing”, turn left (int

turning_left) from their position, denoted as “Turning Left(<)” in the output, or turn right (int

turning_right) from their position, denoted as “Turning Right(>)” in the output. However, in no

way could the cars perform any U-turns.

Each of these possible actions the cars can take were made into functions, where within have a

switch function that takes each car’s original direction (dir_original) and sorts by different cases

of whatever way the car decides to go (North, South, East, West), an example is shown from

the drive_through function in screenshot #2. There are also different functions made to account

for the car’s location, when the car has entered the intersection and is performing its action (int

enter_intersection)(screenshot #3) and for when the car arrives at the intersection (void

*arrive_intersection) and exits, a usleep function is present for when the car is waiting to arrive

as well (screenshot #4).

The layout of this project is a little different in terms of format, and the time at which each car

arrives and exits. I set it to have each car randomly pick an action to take at the intersection to

save time on having to create each car's individual actions. I did this so that when testing I can

pick out however many cars I want to go through the intersection and see if they perform the

actions required within a reasonable time frame (as seen in outputs screenshots). Overall, the

output is not identical, but cars from different directions are able to pass through the

intersections in a reasonable amount of time, going either straightforward, turning left or right,

then exiting. The output displays the car ID, the car’s original direction, the car’s target direction,

the actions they perform in order, and the time in double.

Screenshots

#1

#2

#3

#4

Outputs

With 8 cars

With 10 cars

Source Code (canvas was not allowing .c files to upload)

tc.c

//C file to test the traffic control system, mimicking an intersection

sequence of events.

#include "tc.h"

int main(int argc, char * argv[]) {

 int ret, i;

 //Each car has its own thread, initialized to NULL

 pthread_t *car_threads = NULL;

 semaphore_create(&NW, 1);

 semaphore_create(&NE, 1);

 semaphore_create(&SW, 1);

 semaphore_create(&SE, 1);

 semaphore_create(&XX, 3);

 //parse command line

 if(0 != (ret = parse_args(argc, argv))) {

 return -1;

 }

 //generates random numbers

 srandom(time(NULL));

 // This implements the car threads with pthreads

 car_threads = (pthread_t*)malloc(sizeof(pthread_t) * num_cars);

 for(i = 0; i < num_cars; ++i) {

 if(0 != (ret = pthread_create(&(car_threads[i]), NULL,

arrive_intersection, (void*)(intptr_t)i))) {

 fprintf(stderr, "Error: Failed to create a car thread! Ret

= %d\n", ret);

 return -1;

 }

 }

 //This joins all of the car threads together

 for(i = 0; i < num_cars; ++i) {

 pthread_join(car_threads[i], NULL);

 }

 //prints the timing information of the traffic control system

 print_footer(1000 * min_time, 1000 * max_time, 1000 * total_time,

num_cars);

 if(NULL != car_threads) {

 free(car_threads);

 car_threads = NULL;

 }

 support_finalize();

 semaphore_destroy(&NW);

 semaphore_destroy(&NE);

 semaphore_destroy(&SW);

 semaphore_destroy(&SE);

 return 0;

}

//This function is for the user to input the number of cars that will

enter

// (through Ubuntu command line) when throught the traffick contrl system,

which has to be greater than zero

//for the system to work properly, this helps to keep track of all the

cars

int parse_args(int argc, char **argv)

{

 if(argc < 2) {

 printf("Usage: %s NumCars\n", argv[0]);

 return -1;

 }

 //for the number of cars to pass through the intersection, which

cannot be 0

 num_cars = atoi(argv[1]);

 if(num_cars <= 0) {

 printf("Error: The number of cars threads must be greater than

0\n");

 return -1;

 }

 support_init();

 //prints the number of cars that will pass the intersection

 printf("Number of Cars: %3d\n", num_cars);

 print_header();

 return 0;

}

 //function that accounts for the car driving through (crossing)

int drive_through(car_direction_t dir_original, car_direction_t

dir_target, int car_id)

{

 semaphore_wait(&XX);

 //prints Crossing if the car is crossing the intersection

 print_state(car_id, dir_original, dir_target,

 "crossing",

 get_timeval_diff_as_double(per_thread_start_timer[car_id],

NULL));

 //switch function for different directions cars can approach from

 switch(dir_original)

 {

 case NORTH:

 semaphore_wait(&NW);

 semaphore_wait(&SW);

 semaphore_post(&XX);

 semaphore_post(&NW);

 semaphore_post(&SW);

 break;

 case WEST:

 semaphore_wait(&SW);

 semaphore_wait(&SE);

 semaphore_post(&XX);

 semaphore_post(&SW);

 semaphore_post(&SE);

 break;

 case EAST:

 semaphore_wait(&NE);

 semaphore_wait(&NW);

 semaphore_post(&XX);

 semaphore_post(&NE);

 semaphore_post(&NW);

 break;

 case SOUTH:

 semaphore_wait(&SE);

 semaphore_wait(&NE);

 semaphore_post(&XX);

 semaphore_post(&SE);

 semaphore_post(&NE);

 }

 return 0;

}

//Function that accounts for when a car is turning left

int turning_left(car_direction_t dir_original, car_direction_t dir_target,

int car_id)

{

 semaphore_wait(&XX);

 //prints Turning Left for when a car is crossing but also turning left

 print_state(car_id, dir_original , dir_target,

 "Turning Left(<)",

 get_timeval_diff_as_double(per_thread_start_timer[car_id],

NULL));

 //switch function for different directions cars can approach from

before turning left

 switch(dir_original)

 {

 case NORTH:

 semaphore_wait(&NW);

 semaphore_wait(&SW);

 semaphore_post(&NW);

 semaphore_wait(&SE);

 semaphore_post(&XX);

 semaphore_post(&SW);

 semaphore_post(&SE);

 break;

 case WEST:

 semaphore_wait(&SW);

 semaphore_wait(&SE);

 semaphore_post(&SW);

 semaphore_wait(&NE);

 semaphore_post(&XX);

 semaphore_post(&SE);

 semaphore_post(&NE);

 break;

 case EAST:

 semaphore_wait(&NE);

 semaphore_wait(&NW);

 semaphore_post(&NE);

 semaphore_wait(&SW);

 semaphore_post(&XX);

 semaphore_post(&NW);

 semaphore_post(&SW);

 break;

 case SOUTH:

 semaphore_wait(&SE);

 semaphore_wait(&NE);

 semaphore_post(&SE);

 semaphore_wait(&NW);

 semaphore_post(&XX);

 semaphore_post(&NE);

 semaphore_post(&NW);

 }

 return 0;

}

//Function that accounts for a car turning right

int turning_right(car_direction_t dir_original, car_direction_t

dir_target, int car_id)

{

 print_state(car_id, dir_original, dir_target,

 "Turning Right(>)",

 get_timeval_diff_as_double(per_thread_start_timer[car_id],

NULL));

 switch(dir_original)

 {

 case NORTH:

 semaphore_wait(&NW);

 semaphore_post(&NW);

 break;

 case WEST:

 semaphore_wait(&SW);

 semaphore_post(&SW);

 break;

 case EAST:

 semaphore_wait(&NE);

 semaphore_post(&NE);

 break;

 case SOUTH:

 semaphore_wait(&SE);

 semaphore_post(&SE);

 }

 return 0;

}

//Function for when a car enters through the intersection

int enter_intersection(car_direction_t dir_original, car_direction_t

dir_target, int car_id)

{

 switch(dir_original)

 {

 case NORTH:

 switch(dir_target)

 {

 case NORTH:

 return -1; // Error: Illegal U-Turn!

 case WEST:

 turning_right(dir_original, dir_target, car_id);

 break;

 case EAST:

 turning_left(dir_original, dir_target, car_id);

 break;

 case SOUTH:

 drive_through(dir_original, dir_target, car_id);

 }

 break;

 case WEST:

 switch(dir_target)

 {

 case NORTH:

 turning_left(dir_original, dir_target, car_id);

 break;

 case WEST:

 return -1; // Error: Illegal U-Turn!

 case EAST:

 drive_through(dir_original, dir_target, car_id);

 break;

 case SOUTH:

 turning_right(dir_original, dir_target, car_id);

 }

 break;

 case EAST:

 switch(dir_target)

 {

 case NORTH:

 turning_right(dir_original, dir_target, car_id);

 break;

 case WEST:

 drive_through(dir_original, dir_target, car_id);

 break;

 case EAST:

 return -1; // Error: Illegal U-Turn!

 case SOUTH:

 turning_left(dir_original, dir_target,car_id);

 break;

 }

 break;

 case SOUTH:

 switch(dir_target)

 {

 case NORTH:

 drive_through(dir_original, dir_target, car_id);

 break;

 case WEST:

 turning_left(dir_original, dir_target, car_id);

 break;

 case EAST:

 turning_right(dir_original, dir_target, car_id);

 case SOUTH:

 return -1; // Error: Illegal U-Turn!

 }

 }

 return 0;

}

//function for when the car arrives at the intersection from whatever

//direction they are coming from

void *arrive_intersection(void *param)

{

 int car_id = (intptr_t)param;

 car_direction_t dir_original;

 car_direction_t dir_target;

 double car_time = 0;

 (void) car_id;

 //for when a car arrives from any direction

 dir_original = random()%4;

 //the car changes directions at random to their "target direction"

 //U-turns can't be done

 do {

 dir_target = random()%4;

 } while(dir_target == dir_original);

 // usleep function for when the car "sleeps" while waiting their turn

at the entersection

 usleep(random()%TIME_TO_SLEEP);

 //keeps track of the time for the car threads

 gettimeofday(&per_thread_start_timer[car_id], NULL);

 //prints aarrving when the car is at the intersection

 print_state(car_id, dir_original, dir_target,

 "arriving",

 get_timeval_diff_as_double(per_thread_start_timer[car_id],

NULL));

 //once the car has arrived then it musst enter the intersection and

complete it's move

 enter_intersection(dir_original, dir_target, car_id);

 gettimeofday(&per_thread_end_timer[car_id], NULL);

 //tracks the car's time and updates the system's overall minimum

 //and maximum time

 car_time = get_timeval_diff_as_double(per_thread_start_timer[car_id],

&(per_thread_end_timer[car_id]));

 //prints exiting when the car is no longer in the intersection

 print_state(car_id, dir_original, dir_target,

 "exiting",

 car_time);

 //Calculates timing, accounting for all cars

 if(car_time < min_time || min_time == -1.0){

 min_time = car_time;

 }

 if(car_time > max_time || max_time == -1.0){

 max_time = car_time;

 }

 /* Increment total time */

 total_time += car_time;

 pthread_exit((void *) 0);

 return NULL;

}

support.c (addition to tc.c)

#include "support.h"

static int initialized = FALSE;

int support_init(void) {

 int ret;

 ret = semaphore_create(&support_print_lock, 1);

 initialized = TRUE;

 return ret;

}

int support_finalize(void) {

 int ret;

 ret = semaphore_destroy(&support_print_lock);

 initialized = FALSE;

 return ret;

}

void print_footer(double min_time, double max_time, double total_time, int

num_cars) {

 if(FALSE == initialized) {

 fprintf(stderr, "Warning: You forgot to call support_init() before

calling print_footer()\n");

 support_init();

 }

 printf("--------+-----------------+-----------------+-----------------

+--------------\n");

 printf("Min. Time :%12f msec\n", min_time);

 printf("Avg. Time :%12f msec\n", total_time / num_cars);

 printf("Max. Time :%12f msec\n", max_time);

 printf("Total Time :%12f msec\n", total_time);

 printf("--------+-----------------+-----------------+-----------------

+--------------\n");

}

void print_header(void) {

 if(FALSE == initialized) {

 fprintf(stderr, "Warning: You forgot to call support_init() before

calling print_header()\n");

 support_init();

 }

 printf("-------------------------------\n");

 printf("%7s | %15s| %15s |%15s | %10s\n", "cid", "dir_original",

"dir_target", "State", "Time");

 //printf("--------+-----------------+-----------------+---------------

--+--------------\n");

}

void print_state(int car_id, car_direction_t dir_original, car_direction_t

dir_target, char * state, double timer) {

 if(FALSE == initialized) {

 fprintf(stderr, "Warning: You forgot to call support_init() before

calling print_state()\n");

 support_init();

 }

 semaphore_wait(&support_print_lock);

 printf("%7d %15s %15s %15s %10.3f\n",

 car_id,

 (dir_original == NORTH ? "North" :

 (dir_original == WEST ? "West" :

 (dir_original== EAST ? "East" :

 (dir_original == SOUTH ? "South" : "?")))),

 (dir_target== NORTH ? "North" :

 (dir_target == WEST ? "West" :

 (dir_target== EAST ? "East" :

 (dir_target == SOUTH ? "South" : "?")))),

 state,

 timer*TIME_MSEC);

 semaphore_post(&support_print_lock);

 return;

}

double timeval_to_double(struct timeval ctime) {

 if(FALSE == initialized) {

 fprintf(stderr, "Warning: You forgot to call support_init() before

calling timeval_to_double()\n");

 support_init();

 }

 return (ctime.tv_sec + (ctime.tv_usec/(1.0 + TIME_USEC)));

}

struct timeval get_timeval_diff_as_timeval(struct timeval start, struct

timeval end) {

 struct timeval loc_diff;

 if(FALSE == initialized) {

 fprintf(stderr, "Warning: You forgot to call support_init() before

calling get_timeval_diff_as_timeval()\n");

 support_init();

 }

 if(end.tv_usec < start.tv_usec) {

 loc_diff.tv_usec = (TIME_USEC - start.tv_usec) + end.tv_usec;

 end.tv_sec -= 1;

 } else {

 loc_diff.tv_usec = end.tv_usec - start.tv_usec;

 }

 loc_diff.tv_sec = end.tv_sec - start.tv_sec;

 return loc_diff;

}

double get_timeval_diff_as_double(struct timeval start, struct timeval

*given_end) {

 struct timeval loc_diff, end;

 if(FALSE == initialized) {

 fprintf(stderr, "Warning: You forgot to call support_init() before

calling get_timeval_diff_as_double()\n");

 support_init();

 }

 if(NULL == given_end) {

 gettimeofday(&end, NULL);

 } else {

 end.tv_sec = given_end->tv_sec;

 end.tv_usec = given_end->tv_usec;

 }

 loc_diff = get_timeval_diff_as_timeval(start, end);

 return timeval_to_double(loc_diff);

}

tc.h (initilizes functions for tc.c)

//header to define the functions that will be used for the

//traffic control system test file tc.c

#include "support.h"

//defines the intersections coming from North, South, East or West

#define XSECT_NW 0

#define XSECT_NE 1

#define XSECT_SE 2

#define XSECT_SW 3

//for the number of cars threads that will go through the traffic control

system

//which can be determined by user in an Ubuntu command line

int num_cars = 0;

//the minimum, maximum and total time a car spent in the sytem

double min_time = -1.0;

double max_time = -1.0;

double total_time = 0;

//tracks the start and end times for each car

struct timeval per_thread_start_timer[1000];

struct timeval per_thread_end_timer[1000];

//Semaphores to lock each quadrant North, South, East and West

semaphore_t NW;

semaphore_t NE;

semaphore_t SW;

semaphore_t SE;

//limit of 3 cars in the intersection that aren't exiting

semaphore_t XX;

//parse command line

int parse_args(int argc, char **argv);

//This function is for when a car goess straight through the intersection

//from any direction. Has arguments for each Car's ID (car_id) and the

original

//direction the car arrives from (dir_original) and its target direction

(dir_target)

int drive_through(car_direction_t dir_original, car_direction_t

dir_target, int car_id);

//This function is for when a car in any direction decides to turn left

int turning_left(car_direction_t dir_original, car_direction_t dir_target,

int car_id);

//This function is for when a car in any direction decides to turn right

int turning_right(car_direction_t dir_original, car_direction_t

dir_target, int car_id);

//This function is for when a car is in the intersection, it decides if a

car

//is going to turn left, right, or drive through

int enter_intersection(car_direction_t dir_original, car_direction_t

dir_target, int car_id);

//This main thread function is for when a car arrives to the intersection

void *arrive_intersection(void *param);

